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Abstract

A two-dimensional steady-state model is developed, in which, even though
ion inertia is retained, a variable separation allows us to analyse separately
the axial and the radial transports. For the axial transport (along magnetic
field lines) an integral dispersion relation is derived that includes a nonlinear
form that is obtained from the ion—neutral collision operator. The dispersion
relation is solved for various values of the Paschen parameter, and the
electron temperature and the axial profiles of the plasma density and plasma
potential are calculated. The solutions of the dispersion relation are shown
to have three asymptotic limits: collisionless, linear diffusion and nonlinear
diffusion. For the radial transport, the rate of which is determined by
electron cross-field diffusion, the full equations are numerically solved. The
calculations are compared to probe measurements performed at various
locations inside our helicon source for various magnetic field intensities and
wave powers. The proposition that the measured increase in the plasma
density with the increase of the magnetic field intensity is a result of an
improved confinement, is examined. For the parameters of the experiment
described here, this proposition implies that the electron collisionality is
much larger than expected from electron—ion and electron—neutral
collisions. A different explanation for the dependence of the density on the
magnetic field intensity is suggested, that the density increase that follows
an increase of the magnetic field intensity results from an improved
wave—plasma coupling via the helicon interaction, causing a larger fraction
of the total wave power to be deposited inside the helicon source.

1. Introduction

Considerations of particle and energy balance are often
used to estimate the electron temperature and density
in low temperature plasmas. In models that describe
the steady-state in such plasmas, particle balance usually
determines the electron temperature, while energy balance
determines the plasma density [1]. In order to quantitatively
estimate the balance between volume ionization and transport
through the boundaries, the spatial distributions of the plasma
variables should be found by a solution of the appropriate fluid
equations. In this paper we present a theoretical model that
improves the calculation of particle and energy balance in low
temperature plasmas as well as of the spatial distributions of
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the plasma parameters. We then employ the model to analyse
the measurements in our helicon plasma source.

The model we develop concerns the common configu-
ration of a finite length azimuthally symmetric plasma cylinder
that is immersed in an axial magnetic field. The fluid
equations that describe the plasma are two dimensional. The
transformation of these partial differential equations into two
sets of ordinary differential equations for the radial and for the
axial directions, as a result of a variable separation, provides
a convenient tool for the calculation of the distributions of the
plasma variables. Usually the variable separation technique
is used within the diffusion approximation. The first new
aspect of our model is the extension of the use of a variable
separation beyond the diffusion approximation also to cases
in which ion inertia is retained. That way we can analyse the
two-dimensional equilibrium by solving two separate sets of
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ordinary differential equations for the axial and for the radial
directions not only in the collisional regime but also in the
collisionless regime (in which the ion inertia is dominant).
The two sets of equations are decoupled except for two
parameters (one of them the electron temperature) which are
present in both sets. Upon imposing boundary conditions,
the two parameters turn into eigenvalues of the problem. The
governing fluid equations and the separation of variables are
presented in section 2.

Ion—neutral collisions usually determine the plasma
confinement along magnetic field lines. The second new
aspect in this paper is the formulation of a model for these
collisions that has an extended regime of validity. Godyak [2]
has derived an expression for the drag the ions experience
due to their charge-exchange collisions with neutrals. He has
shown that, as a result of these collisions, the ion dynamics
is governed by a nonlinear diffusion equation, which he later
generalized to include the effect of ion inertia [3]. Recently,
Breizman and Arefiev [4] have performed a kinetic analysis
of the ion dynamics, in which, by employing self-consistent
perturbative methods, they calculated the nonlinear drag on
the ions. In those treatments of the ion—neutral collisions the
neutral motion was neglected and the neutrals were therefore
considered an immobile background. When the ion velocity
is larger than the neutral velocity the neglect of the neutral
velocity is reasonable, since the relative ion—neutral velocity
approximately equals the ion velocity. However, when the ion
flow velocity is small, the relative ion—neutral velocity is on the
order of the neutral thermal velocity that should not, therefore,
be neglected. In particular, for a high gas pressure the ion flow
velocity is small in most of the plasma volume and the neglect
of the neutral thermal velocity is not justified. Indeed, the limit
on the validity of the nonlinear drag model, in which the neutral
thermal velocity is zero, has been pointed out by Godyak [3].
The regime of validity of our model is extended, since we
include in the collision operator collisions between ions and
neutrals of a finite-temperature Maxwellian distribution. In
our so-generalized model we do not, however, self-consistently
solve for the ion distribution function, as was done in [4] for
the immobile-neutrals case, but we rather assume a cold-beam
ion distribution function. With this simplifying assumption
we are able to integrate the collision operator and to derive
an approximated general form for the drag force between ions
and neutrals, a form that retains the nonlinear drag as well as
the effect of the neutral motion for low ion velocities. At the
limit of high gas pressure (in many cases around 10 mTorr, see
section 4) the general form of drag force on the ions derived
here ends up being linear in their velocity, correctly resulting
in the familiar linear diffusion, that has been excluded from the
previous models [2,4]. Atintermediate pressures the nonlinear
diffusion [2,4] is recovered, and, when the pressure is low, ion—
neutral collisions become negligible altogether. The analysis
of the collision operator and the derivation of the generalized
form of the drag force are performed in appendix A.

In section 3 we employ the generalized form of the drag
force between ions and neutrals, derived in appendix A, to solve
the plasma dynamics along magnetic field lines. We make an
approximation that allows us to employ the variable separation
that we introduced in section 2 and to analyse separately the
dynamics in the axial direction. We identify three distinct

regimes in which the ion dynamics takes three different forms.
Not surprisingly, the form that the ion dynamics along the
magnetic field lines takes is determined by the value of a
dimensionless parameter that is proportional to the product
of the gas pressure and the plasma length (as is the Paschen
parameter), or, equivalently, to the number of ion mean free
paths along the system (the Knudsen number). When this
dimensionless parameter is small, the ions are collisionless.
Atlarger values of this parameter the nonlinear ion diffusion is
dominant, while at even larger values linear diffusion governs
the plasma dynamics. We determine the values of the Paschen
parameter at the transitions between the various regimes, and
derive the asymptotic values of various physical quantities.

In appendix B we apply the equations of section 2 for the
case that the ion inertia is neglected in both radial and axial
directions and derive two decoupled diffusion equations in the
two directions. The diffusion equation along the magnetic
field lines is equivalent to the equations derived in section 3
and in the appropriate limits is reduced to either the standard
linear diffusion equation or to the nonlinear diffusion equation
previously derived [2]. When the ion inertia can be neglected
in the radial direction, the solution of the diffusion equation
in that direction provides us with a relation between the two
eigenvalues mentioned above, a relation that holds even if
the ion inertia is retained in the axial direction, along field
lines. This relation, which is valid when the ion inertia can
be neglected in the radial direction, is used in appendix C to
express in a more explicit way the various asymptotic relations
derived in section 3. Numerical examples are presented in
section 4. The axial steady state is calculated for various cases
and the general solutions are compared to the solutions given
by the asymptotic limits.

A uniform gas density and a uniform electron temperature
are simplifying assumptions that we make in our model.
The assumption of a uniform gas density is valid at the
weak ionization regime, when the plasma only slightly
affects the gas parameters. The assumption of a uniform
electron temperature relies on the assumed high electron heat
conduction. Both assumptions simplify the analysis and allow
us to perform the variable separation that is inherent to our
model. However, when we assume a uniform gas density,
we ignore nonuniformities that result from neutral depletion
[5, 6]. Nonuniform electron temperature could follow a
nonuniformity in the gas density as well as nonuniformities
in the deposition of external energy in the plasma. Indeed,
the profiles of the plasma density that we deduce from
probe measurements in our helicon plasma source are not
symmetrical in the axial direction, indicating that at least one
of the assumptions, a uniform neutral density or a uniform
electron temperature, does not hold. In order to take advantage
of the variable separation we apply our model to the experiment
nevertheless, assuming that the experimental and theoretical
average values of the temperature and the density should
be similar. Although a considerable number of theoretical
investigations have been carried out that addressed the spatial
distribution of the wave energy deposition in the plasma [7-12]
and some have also used the calculated distribution of energy
deposition to calculate the nonuniform distribution of the
electron temperature [13—15], there is an advantage to our
simple model which allows a variable separation in solving
the steady-state equations for the plasma.
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The experiment and the probe measurements are described
in section 5. The experimental results described here are
detailed measurements of the ion saturation current into a
Langmuir probe inside a helicon plasma source [16-24]. The
ion saturation current was measured in various locations inside
the source as a function of the applied magnetic field intensity
and of the wave power. We then attempt to understand the
dependence of the plasma density (deduced from the measured
ion saturation current) on the magnetic field intensity and on
the wave power. The dependence of the plasma density on
the magnetic field intensity is often discussed in the literature,
usually in relation to the helicon wave—plasma interaction. In
this paper we apply our model to seek the relation between
the dependence of the plasma density on the magnetic field
intensity and on the wave power and particle and energy
balance. There are two possible reasons for the observed
increase in density with the increase of the magnetic field
intensity. One such reason is an improved radial confinement
by the magnetic field. We show that if the better confinement
is indeed the main reason for the density increase, it is implied
that the electron collisionality that causes the transport of the
electrons across the magnetic field lines is much larger than
expected from electron—ion and electron—neutral collisions.
Although the high collisionality is also consistent with the
weak dependence of the plasma impedance on the magnetic
field intensity, as we indeed see experimentally, we find it hard
to conclude that such a high anomalous electron collisionality
actually exists in our plasma. Rather, we suggest a second
reason as the main reason for the density increase. For a fixed
total wave power the increase in the magnetic field increases the
wave—plasma coupling via the helicon interaction, causing a
larger fraction of the total wave power to be deposited inside the
helicon source. This second possible reason will be examined
in a following paper.

The solution of the equations in the radial direction
for classical and anomalous electron resistivity and the
comparison with the experiment are described in section 6.
We conclude in section 7.

2. The equilibrium model

In this section we present the fluid equations that describe the
steady-state of a finite length azimuthally symmetric plasma
cylinder that is immersed in an axial magnetic field. We then
perform a variable separation.

The plasma dynamics is governed by the continuity
equation _

V - nv = vian, )]

by the electron momentum equation, in which the electron
inertia is neglected,

0=enVe¢p — VnT — enBi,
X EZ - nmeveNﬁe - nmevei(veG - 06)29 (2)

and by the the ion momentum equation, in which the ion
pressure is neglected,

miV - nvv = —enVe +enBv x €, — nm;viNv
—nm;Vie(Vg — Vep) €. (3)
Here B is the intensity of the applied axial magnetic field, n is

the (quasineutral) plasma density, e is the elementary charge,
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m; and m, are, respectively, the ion and electron masses, v
and v, are, respectively, the ion and electron flow velocities,
Vei » Ven and vie = veime/m; are the electron—ion, electron—
neutral and ion—electron collision frequencies, T is the electron
temperature, ¢ is the electrostatic potential and v, is the
ionization frequency. Cylindrical coordinates r, 6 and z are
used. The ion pressure is neglected since the ion temperature
is usually smaller than the electron temperature. Adding
equations (2) and (3), we obtain the momentum balance
equation:

mV - nvv = —VnT — m;ond, “4)

where the coefficients of the tensor v are:
Vir = (wciwce)/Ve +UiN + (me/mi)VeNa
Vrog = _(wciVeN)/Vea

Vog = (me/m;)(VeNVei) /Ve + ViN, Vor = —Vrg, (5)

Vzz = UiN + (e /M) VeN,
Vrz = Voz = Vzr = Vzp = 0.

In writing equation (4) we employed the 6 component of
equation (2) and used the relation vey = (@ce/Ve)V, +
(Vei/Ve) Vg, Where ve = VeN + Vej and ve, = vy, Ve; = v,. In
equation (5) wcie) = eB/mi() is the ion (electron) cyclotron
frequency. We analyse the case in which the plasma is
surrounded by insulating walls. A conductor at the axial
boundaries could enable electrons to radially cross field-lines.
However, no such conductor is present, and, therefore, there is
no radial or axial current in the plasma.

In a self-consistent approach, such as that of Cho
and Lieberman [14], the spatial distribution of the electron
temperature is determined by the spatial distribution of
the wave energy deposition into the electrons and by the
electron energy transport processes. We make the simplifying
assumption that the electron temperature is uniform:

T = const. (6)

Once this assumption is made the spatial distribution of the
wave energy deposition does not affect the plasma steady-
state, what matters is only the total energy deposited. The
assumption of a uniform electron temperature is justified to a
certain extent by the heat conductivity of the electrons being
large. The implications of this assumption on the accuracy
of results of the calculation will be tested in a future study.
Here we take advantage of the variable separation that is made
possible because of this assumption.

When the geometry, the neutral density, the intensity of
the magnetic field and the transport coefficients are specified,
the temperature, the electric potential and the density profile
are usually determined by the solutions of equations (1) and (4)
that describe particle balance, and by the requirement that
the boundary conditions be satisfied. The actual value of the
plasma density is determined by power balance:

I'r = %nvl dsS = / Vionh dV,

1 n
er =&.+2T +0.5T |:1 +1In <——>] .
27 me

P =Trer,
@)
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Here P, the total deposited power, is equal to the rate of plasma
generation (which equals the rate at which plasma escapes from
that volume I't) multiplied by er, the average energy lost in
the production of one electron—ion pair [1]. This lost energy
includes the energy cost for ionization &., and the energy lost by
electrons and ions at the plasma boundaries. We note that, as
long as no current is drawn at the plasma boundaries, the energy
gained by the ions while crossing the sheath at these boundaries
(an energy that is several times the electron temperature) is
equal to the energy lost by the electrons that cross the sheath.
When this energy is included in er, it should be understood
as an energy that has been deposited in the electrons in the
plasma bulk. We also note that the total particle flux I't is
determined only by the total deposited power P and by the
electron temperature 7' that determines er.

We turn now to solve the equations by a variable
separation. Within the assumptions of uniform transport
coefficients and temperature, we seek a solution of the form:

n(z,r) =nof(r)g2),

Veg = Veg (r)a

vp = vg(r),
O (z,1) = ¢1(2) + (7).

The plasma column is of alength L and radius a and is assumed
to be symmetrical in the z direction, so that the maximal density

U = Ur(r)v

v, = v,(2),

is at its centre, and we write f(0) = g(0) = 1. From the
continuity and momentum equations we obtain:
ad
— @ fv) =wrf, ©
ar
2
s Ul 5 0 5 d v,
VionV,, — T +'Ura7vr = —Cq <Vr — Ev, — 7
—V, 02 + V0,0, (10)
Vo Uy 0
VionVp + —— + Uy —— Uy = —VggVy — Vg, Uy, (1)
r ar
(12)

(gvz) = (Vion - Vr)g
0z
and

13
0z 0z (13)

Here ¢, = /T /mj is the ion acoustic velocity. We write the
ionization frequency as

B
2, 2 2 2
VionV; + U —V; = ¢ | —V; — (Vion — V) | — vz 07,

Vion = BN, B = (OionVedt), (14)

where the brackets ( ) denote averaging over the electron
velocity distribution function, oj,, is the ionization cross
section, veqr 18 the electron velocity and N is the neutral density.

We therefore have a set of ordinary equations for the
five unknown functions f, g, v,, vg and v,. The boundary
conditions at the radial and axial boundaries determine the
values of the parameters T and v, (a parameter that results from
the variable separation), which turn out to be eigenvalues of
the problem. Once these five functions and two parameters are
found, the electron momentum equation is used to determine
the values of veg, ¢1 and ¢s:

w, Vei

Vep = — VU, + — Vg, (15)
Ve Ve
0 T ol
9 _T3lng  meven, (16)
0z e 0z e

and
MeVeN

ad Tal
ﬁ — nf+BUeg+ Up.
e

ar e or
Before continuing we note that the approximated electric
potential is given by the r component of equation (3) in which
we neglect the ion inertia and assume vy = 0: d¢/dr =
—(mjvin/e)v,. Comparing this expression to equation (17) it
is clear that

T 0ln 0 T 0ln
— fl— Veg ﬂ«* f

e or ar e or

a7

(18)

To lowest order there is a balance in the r direction between the
electron and the magnetic field pressures. The radial electric
field is small (except very near the radial boundary where the
ion inertia plays a role). The axial electric field, however,
is not small. This results from the second term on the RHS
of equation (16) being small. Neglecting this small term we
obtain

T
¢ = ;lng. (19)

Here the zero of the potential is at the peak potential of the
plasma.

The total radial and axial fluxes through the boundaries
become, when variables are separated,

Ty = 2maLnog(fv,)r=as Tt = 2ma’ng f(gv.).=1 2
| (L2
— / g(z)dz,

_ 2 a
. F== /0 rfydr (20)

and since vjo, is constant across the discharge (7 and N are
uniform), we obtain from equations (9) and (12):

g

v,faz _L
Tfv)r=a = T (8v)z=1/2 = (Vion — Vr)giv
(21)
so that
Tyt =nofgV,, Lo =n0f8V Wion — vr)
= Ty =+ Tor = 19 £V Vion, (22)

where V = ma®L is the plasma volume. We make the (not
necessarily true) assumption that g(z) = g(—2z).

We turn to the transport coefficient v,;, = v +
(me/mi)veN = viN, found through the calculation of the drag
on the ions due to their collisions with neutrals. The details of
the calculation and the conditions for its validity are presented
in appendix A. The drag force turns out to be

P =i (25) "y d+ s L Vet
= —mv m: noiN Y RRVE er
1 1
= <1 + 27l2> exp(—dz)],

Oel - m; \ '/
=, d= ! v.
2 2T,

Here T, is the neutral gas temperature and o and o are the
cross sections for charge exchange and elastic collisions. At
the limits of small and large d, the force becomes

ON = Ocx + (23)

= —3minoinNvrd, d«1,
(24)

d>1.

Here vy = /8T, /(rm;) is the gas thermal velocity.

ﬁ = —minaiNN|ﬁ|t_5,

155



A Fruchtman et al

The force between ions and neutrals depends on the
magnitude of the ion velocity. Therefore, when the component
of this force is taken along the magnetic field, the variable
separation is not possible. In order to enable the variable
separation we approximate the dimensionless velocity d in
equation (23) by d,. By sacrificing some accuracy, we
can reduce the equations to a one-dimensional form, while
the nonlinearity in the ion—neutral collisions is essentially
preserved. The ion—neutral collision frequency takes the
nonlinear form in the axial direction. In the radial direction,
where it is less important, we keep the linear term only and use
vin = 30ixNur in v, and vge. This approximation is good
near the plasma axis (where the plasma density is high) and
is less accurate near the radial boundaries (where the plasma
density is low). Also, when the plasma is magnetized the radial
ion velocity is small except near the radial boundaries, which
makes the approximation more accurate.

In the next section we employ the generalized form
of the drag force between ions and neutrals derived here
(equation (23)), to solve the plasma dynamics along magnetic
field lines. We then derive expressions for various physical
quantities at three asymptotic limits.

3. The axial flux along magnetic field lines

When we use the form of the axial force as in equation (23),
equation (13) and the boundary conditions become (in
dimensionless forms)

M,
¢

(1-M> = bp(by + brM? + M?) (25)

and

M.(£ =0)=0, M(¢=1)=1, (26)

where the axial Mach number, dimensionless coordinate and
parameters are

. ~NNL
MZ = &7 { = < 5 bP = oN 5
Cs L/2 2
4 27
b= PV b= P M pa.
OiNCs  OiNCsN OiINCs  3Cs
The ratio vr/cs is
8T,
r_ 2% 28)
Cs nT
and
3/ 1 1
P(d) = Td[ [ (1 - @> erf(d)
1 /1 1
+—=+— —d* | —1}. 29
77 (a2 o] -1} >

The variable d, defined in equation (23), can be written as a
function of the Mach number M, and the ratio vr/cs as

2 CSM
ﬁvT ¢

The function P (d) is monotonically decreasing, P(0) = 1 and
P(d) —> 3./7/(8d) when d —> oo. The dimensionless
Paschen parameter bp, bp = [oin/(2T,)] Py L, is proportional

d= (30)
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to the product of the gas pressure P, and the system length
L /2. It is also inversely proportional to the Knudsen number,
which is proportional to the ratio of the ion mean free path,
Ai = (oinN)~!, to the system length. Note also that b, is not
constant but rather varies with M,.

To the momentum equation we add the dimensionless
continuity equation:

d(gM-)
¢

which is integrated with the aid of equation (25) to calculate
gs, the value of g at the sheath at the axial boundaries.

The momentum equation, equation (25), is integrated
to give a relation between M, and ¢. When the boundary
conditions, equation (26), are imposed, a dispersion relation is
obtained, which provides us with a relation between v, and T,
in addition to the relation between these two parameters that
we obtain from the radial equations. The relation between M,
and ¢ and the dispersion relation are:

= bebog = gs = bpbog, €29}

v (- MD) /
/ = dM, = bp{,
o (bo+baMZ+MP)
32
| (=M (32)
/ T 4M, = b
0 (b0+b2MZ+M3)

Combining equations (25) and (31) we obtain the relations

{ /M" [(bo + b2)x + x?] }
g=expi— ————dxy,
0

(b() + b2x2 + x3)

(33)
' [(bo + ba)x +x7]
s — (,¢ — — =5 .
B ZEPNT N (o + box? 29
Following these relations, equation (19) yields
5= T /M [(bo + b2)x + x?]
T e bo + byx? + x3 ’
o (bot+ba ) (34)
b= T (' [(bo+b2)x +x7]

e Jo (by+brx?+x3)

We turn now to derive expressions for M;, g and ¢ in
several limits. We discuss three cases. One case is of linear
diffusion. In this case the collision operator is linear and the
third term in both denominators of equation (32) is neglected.
A second case is that of nonlinear diffusion, in which the
collision operator is nonlinear and the second term in both
denominators of equation (32) is neglected. In both linear
and nonlinear diffusion cases the ion inertia, the second term
in the numerators of equation (32), is neglected. In the third
case the ion inertia, represented by the second term in both
numerators of the equations, is retained, while the third term
in the denominators is neglected.

We first determine the transition between the case that the
collision operator is linear to the case that it is nonlinear. Both
the second and third terms in the denominator of the integrand
are monotonically increasing functions of M,. The transition
between the dominance of the second term and the third term
occurs at M, = M, , that satisfies the equality

M., = by(M,). (35)
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The second term is dominant for M, <« M_ , while the third
term is dominant for M; > M,,;. The third term in the
denominator can be neglected if

M, > by, (36)

because the integrand is then small for M > M_,. In this
case the collision operator is linear. The second term in the
denominator can be neglected if

M, < by (37
and the collision operator is nonlinear. Equivalently to
equations (36) and (37) we write the conditions for the two
cases in the following forms. The collision operator is
linear when

by> <« M., = by(M.,) < by(b))

4 2
_ P Ay <—ﬁbg/3> (38)
OiNCs  3Cs VT ur
and is nonlinear when
by > br(by?). (39)

Note that b; is a decreasing function of M.

3.1. The collision operator being linear

Let us discuss the form of b, (bé/ 3

operator is linear. When

) in the case that the collision

2 ¢ 3
— —by'" 1, 40
T < (40)
the condition for the collision operator to be linear (38)
becomes p 4
v
h <« 2+ T 1)
oOiNCs 3¢
while when 5
Cs 1/3
——b 1, 42
ﬁUT 0 > ( )
the condition becomes:
13 B 7 ()’
by” « +—HE ) - (43)
OiNCs 4b0 Cs
This can happen only if
2
b4 v
L (—T) . (44)
OiNCs 4]?0 Cs
Otherwise 5
bid v
by* <« —73 (—T> : (45)
4170 N Cs

which contradicts our assumption, equation (42). If indeed
equation (44) holds, we can neglect the second term in the
expression for b, altogether. It turns out, therefore, that when
the collision operator is linear we can safely write

B +4UT

by, = .
2 3¢

(46)

OiNCs

Since b, in this form is constant and independent of M,, we
integrate equation (32), in which we neglect the third term in
both denominators, and equation (31). As a result we obtain

1
bpbyt = —M, + (E + s) arctan(s M),

)

1 1/2)(1+(1/5%))
§= (1 +32MZ2>

B 1 (1/2)(1+(1/5%)) (b 12 w
5= \1+52 ’ §= bo ’

The dispersion relation becomes

1
bpby = —1+ (f + s> arctan(s). 48)
s

3.2. Linear diffusion

When the collision operator is linear, the ion inertia can be
neglected if
by L by. 49)

Neglecting the ion inertia, the second term in both numerators
of equation (32), we obtain

b\ 2
M, = (;) tan[bp(bob2)'/*¢1,
2

(50)
g = S = cos[bp(bobr)"?¢]
1+ (by/bo) M? ’
bo\'"* _ 2
&=\ , g =—=0.63662 (51)
bz v
and the approximate dispersion relation in the form:
be(boby)'? = 7. (52)

This is the linear diffusion result. Note that sometimes the ion
inertia can be neglected even in the collisionless case, in which
bp = 0. That happens when ionization is balanced by radial
diffusion 8 &~ v, /N, so that by K b,.

The requirements for the validity of the linear diffusion
case, as formulated above, by < b, and b(l)/ 3 < by, together
with equation (52), result in

bpby > % and  bpbd > % (53)
respectively. Since by < b, we can approximate
v.L  4dur
by = by — by = + . 54
: 2 2¢sbp 3¢ %)

Equations (53) and (54) are now written in a form that
determines the regime of validity of the linear diffusion case as
v.L 4v T
Thy> =,

+ nb
2¢s 3¢, P72 Va2t

When the conditions (55) hold, the solution of the dispersion
relation (52) and g; become

BNL vL (m\2(vL 4vr \~
= + (—) + Db ,
ZCS 2Cs 2 2Cs 3CS

_ (o (L e\
8=\n) T2\2a T3 )

(55)

(56)
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The ionization is balanced by radial transport and axial linear
diffusion.

3.3. Retaining the ion inertia

When the collision operator is linear, the ion inertia should
be retained when by = b,. This happens when both radial
transport and collisions are small

NL v, L 4u
bo=by = P , d > ; pr.
OiNCs 2¢y 2¢; 3¢
When these conditions are combined with the condition for the
collision operator being linear, bé/ 3 < by = by, we find that

by = B/(oincs) is much larger than unity. In that case

(57)

b4 1
(5—1); — _M, +2arctan(M.), e
1 - 0.5
8s = 3 g=——>=087597
2 /2 —1
(58)
and the dispersion relation becomes
BNL =«
bpby = =——1 59
pbo 2. > (59)

Since b, = by > 1 it means that bp < 1. This is the fluid
description of the free-fall presheath that is usually described
kinetically [25]. The ion inertia case is therefore retained when

NL = VL
p =——1>
2c¢s 2 2c¢s

) 1> by. (60)
In summary, if bp <« 1 and v,L/(2¢) K 7w/2 — 1, we
obtain the solution (59), valid for the small radial transport,
collisionless case.

3.4. The nonlinear diffusion

When the collision operator is nonlinear, the ion inertia can be
neglected if

by < 1. ©61)

Since by < bs, the condition for the collision operator being
nonlinear, b(l)/ 3 > b,, holds only if b(l)/ 3 > by, resulting in
by < 1. Therefore, inequality (61) always holds, and the ion
inertia can always be neglected, when the collision operator is
nonlinear. In summary, the conditions for the validity of the
collision operator being nonlinear are

4
b2=< '8 + UTP><<b(1)/3

OiNCs 3¢
1/3
v
_ ( B v ) .l

OiNCs oinesN
The left inequality ensures the nonlinear diffusion, while the
right inequality justifies the neglect of the ion inertia. As we
explained above, the left inequality insures the right inequality,
which means that when the nonlinear diffusion is valid, the ion
inertia can be neglected.

This regime, in which the nonlinear collision term is
dominant, was explored by Godyak [2]. The solution of

(62)
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equation (32), when the second term in the denominator and
the ion inertia are neglected, becomes

1/3

) b2/3§- 3 /-M:/bo dx _ 1
PSS T UMby

(63)
In order to obtain the expression for the density we used the
simplified nonlinear form of equation (25), in which the ion
inertia was neglected, and equation (31). Consistently with
the neglect of the ion inertia we assume that M, is infinite at
¢ = 1 and obtain the following approximate expressions and
dispersion relation:

© d 2
bpb(z)/3 = ozé/3 = / o
0

1+x3 33
(64)
& = iﬂ g = L
s bll>/2 ’ aé/3'

We note that (gv,); approximately equals b(])/ 3cs and, as
expected from a diffusion approximation, is independent of
the exact value of the ion velocity at the plasma edge. The
solution of the dispersion relation can also be written as

v,L ag

BNL
= —. 65
20, =20ty 6)

The ionization is balanced by radial transport and axial
nonlinear diffusion.

We use equation (65) in order to express b, as b, =
vy L/ Qesbp) +ac /by + [4vr/Be) P2/ (Jrvrby )],
Inequalities (62) and the resulting dispersion relation (64)
together define the regime of validity of this approximation
as aé/ L b < Olé/ 3(by)2. The right inequality can be
written as b, < ot(l;/ ?/by?. Therefore, a(l]/ 3 /by/? has to be
much larger than each of the three terms composing b,. It
can be easily verified that, in order to be larger than the third
term in the expression for b,, the argument of P should be
much larger than unity. The requirements for validity of the
nonlinear approximation become

UrL 2 1 2/3 4aé/3 Cq 2
—5, 0 b — ] . 66

vt

We have therefore characterized the three asymptotic
regimes for the ion axial transport, the linear diffusion, the
nonlinear diffusion and the ion inertia regime.

In appendix B we reexamine the diffusion regime, which
encompasses both linear and nonlinear diffusions in the axial
direction, and a linear diffusion in the radial direction. This
diffusion regime is obtained when we make the approximations
of neglecting the ion inertia in both axial and radial directions as
well as the azimuthal ion velocity, so that vy = 0. As is shown
in appendix B, the linear diffusion in the radial direction yields
the well-known form for the parameter v,,

WeiWee
Ve = )
Ve
2 2 2 2
pi ¢ Py Cive
=2 =S p =24048. (67)
as Vyy as WeiWee

In appendix C we rewrite the asymptotic expressions derived
in this section for the case the linear diffusion holds in the
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radial direction and the parameter v, takes the form as in
equation (67).

In the next section we demonstrate the three asymptotic
limits within a numerical example.

4. Numerical example

Let us assume that the plasma is strongly magnetized,

(63)

v, =0,

so that the radial diffusion is negligible. We then neglect
the terms proportional to v, (Or to Ve/wciwe) in the
equations.  Employing the relations from the previous
section, the three regimes, the ion inertia regime (60), the
nonlinear diffusion regime (66), and the linear diffusion
regime (55), are reduced to

402 [ e \?
@ o’ <bp <=2 (—S)

(%0
9 (¢ 2
3) b —— .
3) p>>32<UT>

1) bpkl,

(69)
Using the form bp = [oin/(2T,)]P,L, we find that the
transition between the nonlinear and linear diffusion occurs
when the Paschen parameter has the approximate value

P, L~ T
£ OiN

(70)

For an argon discharge in which T is a few electronvolts and
L several tens of centimetres, the gas pressure is on the order
of 10 mTorr.

The solutions of the dispersion relation, equations (59),
(65) and (56), are reduced at the limit (68) to

BNL & BNL o
(M =>-L O =
2cq 2 2c¢ bP
(711)
NL 1 /m\2 3¢
o oLy
2Cs bp 2 4UT

Although the relations between the various physical
parameters are clearer in equation (71), we find that for the
numerical example, it is useful to express all the quantities
as a function of the dimensionless Paschen parameter bp,
the parameter by (which we write as by = f/(oincs) at the
limit (68)), and the ratio vt /c;. In this way we show the relation
between the Paschen parameter bp and the electron temperature
T and other gas parameters. The dispersion relation in general
form and at the three asymptotic limits is

1
bp=f (1 = x2)(bg + byx? + xH~l dx,
0

1 /o 32 _ Qg
W = (3-1). @ B=3%
(72)
@ n=—(2)"
P_bo 2 4UT.

The quantity b, is by = by + 3(vr/cs) P((2//T)(cs/vr)x).
We now express § as [1]:

2T Ei
/8 = (OjonVedf) = OoVe | 1 + — exp <_?) ,

1

(73)

where v, = (8T /mm.)"/? and oy = 7 (e/4mepe;)?, €o being
the permittivity of the vacuum and ¢; the ionization energy.
Figures 1-5 show, respectively, T, gs, 1/er, —¢s and noa*
as a function of log,,bp for argon (ojy is estimated as
ow = 1078 m? [26] and ¢ = 15.76€V, and the gas is
at room temperature, 7, = 0.026eV). In figure 1 the four
relations between the temperature 7 and bp are determined by
equation (72). The ratio of the plasma densities at the sheath
edge and at the centre in the general form (33) and at the three
limits, collisionless (58), nonlinear diffusion (64) and linear
diffusion (56), is

U By + b)x +x2]
g5=exp{— o (bo+byx?+x3) }
al/3
() g =3, @)&zﬁ%, (74)
P

T 3¢
@ &= <4UT>'

These four dependences are shown in figure 2. Figure 3
shows 1/er, the particle flux per power unit, as a function
of log,yb,. We approximate the energy cost for ionization
as & = 120eV —20T, which is a good approximation for
2eV < T < 4eV. Since e is a nonmonotonic function of T,
so is 1/er. Figure 4 shows the plasma potential —¢ as a
function of log,, bp. The plasma potential —¢; is determined
by equation (19) as —¢s = —(T'/e) In g5, while g, and T take
their accurate values or one of the approximated forms, as
specified in equation (74). Note that the plasma potential is
also not monotonic with respect to b, since it is a product of
T and In g, which is a decreasing function of 7.

In order to calculate the maximal line density nga’> we
employ the equation

5 P

s — (75)
27 f(gV;) =126

noa

At the diffusion limit in the rad_ial direction, the radial profile
is described by (95) so that f = 0.432. Figure 5 shows

10 T ‘ ‘ r :
\ general
' --- collisionless
gl Y nonlinear
| - - - linear
6 L
>
Qo
[
4 L
2 L
O L
-1 0 1 2 3
Log,4bp

Figure 1. The electron temperature 7" as a function of log,, bp for
argon. The four relations are determined by equation (72).
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1

06| Y ]

04 r : \ 1

Log, b,

Figure 2. The density ratio g, as a function of log,, bp for argon.
The four relations are determined by equation (74). The four curves
denote the same four cases as in figure 1.

10 T T T -

0 1
-1 1 2 3
Log, )b,

Figure 3. The particle flux per power unit, 1/¢r, as a function of
log,, b, for argon. The four curves denote the same four cases as in
figure 1.

noa® as a function of log,, by, for the general case and for
the three approximate cases. For each of the four cases the
temperature is determined by the solutions in equation (72),
and we use the values of (gv;).—;,» = gscs, Where g is
given by equation (74). The nonmonotonic behaviour of et
is reflected in the nonmonotonic behaviour of nga?.

In the next section we describe the experimental system
and experimental results that we compare to our theoretical
calculations.

5. The experimental system

The experimental system is shown in figure 6. This is a
helicon plasma source that is composed of a vacuum chamber,
a gas flow controller, solenoids that generate an axial magnetic
field, a radiofrequency generator with matching units and
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L0og,0p

Figure 4. The plasma potential —¢; as a function of log,, b, for
argon. The four curves denote the same four cases as in figure 1.

Figure 5. The density per unit length noa® as a function of log,, b,
for argon. The four curves denote the same four cases as in figure 1.

an antenna. The plasma is generated inside a Pyrex tube,
52cm in length and 10cm in diameter. The radiofrequency
generator radiates at 13.56 MHz and the power is varied in the
experiments described here up to 500 W. The antenna is a helix
of six turns of a total length of 35cm and a 11 cm diameter.
The wave excited by the antenna and its coupling to the plasma
are not discussed in this paper. The magnetic field intensity
is varied up to 700 G. The vacuum chamber and Pyrex tube
are pumped to a base pressure of 5 x 107 Torr. The working
gas in the measurements described here is argon. The argon
mass flow rate was 7.1 standard cubic centimetres per minute
(sccm) and the working pressure 2.5 mTorr.

Employing a Langmuir probe system we have measured
the ion saturation current for various wave power levels and
magnetic field intensities. The probe was a flat tungsten
probe of diameter 1 mm that was protected by a L-filter
(L = 0.46mH) and was operated at a potential —100V
referenced to ground. The ion density was calculated from
the ion saturation current according to the usual model of
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Figure 6. The experimental system.
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Figure 7. The ion saturation current along the axis of symmetry of
the helicon source for three different wave powers. The magnetic
field intensity is 650 G. The coordinate z is as shown in figure 6.

a planar probe with a collisionless sheath. This method is
applicable as long as the sheath size is much smaller than
the probe dimension. For our parameters the plasma density
should be much larger than 2 x 10'° cm™3. The lower density
reported here is 2 x 10" ¢cm—3, so that the above condition for
validity is reasonably satisfied. In the figures the zero of the
z axis is located on the connection plane of the Pyrex tube and
the vacuum chamber (see figure 6). The antenna is therefore
located between z = 8cm and z = 43 cm. A processing table
is positioned in the vacuum chamber at z = —32 cm.

Figures 7 and 8 present some results of the measurements.
Figure 7 shows the ion saturation current at various locations
along the axis of symmetry of the Pyrex tube for three
different values of wave power at a magnetic field intensity
of 650G. As expected, the density increases when the wave
power is increased. However, the density profile is not
symmetric in the z direction with respect to the centre of the
cylinder, in contradiction to the theortically calculated profiles
in section 6. This measured asymmetry probably results
from nonuniformities, perhaps in the neutral gas density or in
the electron temperature. Despite the difficulty in describing
the details of the measured density distribution by the theory,
we use the theory to understand the dependence of average
values of the plasma density on the magnetic field intensity
and on the wave power.

Figure 8 shows the ion saturation current at the centre
of the discharge as a function of the magnetic field intensity

0.6
0.5 o
< o
£ 04 . / - 500 W
g 03 e e ——300 W
o +
S 04 Lo o =200 W
E e e
0.1 +3 e
Pas
0 ; ; ‘ |
0 0.02 0.04 0.06 0.08
Magnetic field (T)

Figure 8. The ion saturation current at the centre of the discharge as
a function of the magnetic field intensity for three different values of
wave power.

for three different values of the wave power. Apparent are
the increase of the ion saturation current and of the deduced
plasma density with the increase of both the intensity of the
magnetic field and the wave power. A similar increase of the
plasma density with the increase of the magnetic field intensity
in a helicon source has recently been shown [24]. In that
experiment the cylindrical tube is closed at its far end and the
length of the source L is well defined. In the analysis of our
experiment we also assume that the plasma length is effectively
the Pyrex tube length. This assumption is not necessarily
accurate for our experiment. In a configuration such as ours, in
which the plasma expands from the helicon source into a wide
chamber, it can reach supersonic velocities somewhere in the
chamber, as has been suggested theoretically [27]. Indeed,
recently, an abrupt acceleration to supersonic velocities in a
form of a double layer has been discovered [28,29] and later
reconfirmed [30]. We believe, however, that the inaccuracy
associated with our assumption has only a small effect on the
calculation of the plasma steady state.

The ion saturation current in figure 8 is not monotonic at
low values of the magnetic field intensity. Such nonmonotonic
behaviour is often observed [31] and has been theoretically
addressed [32].

As stated in the introduction, we examine here the
suggestion that the reason for the observed increase in density
with the increase of the magnetic field intensity is an improved
radial confinement by the magnetic field. To that end we solve
in the next section the set of equations that describe the radial
transport, equations (9)—(11).

6. Radial transport

In our attempt to investigate the effect of the magnetic field
intensity on the plasma parameters, we could have made the
diffusion approximation for the radial transport. We would
then have used the expression for v, from equation (67).
Moreover, assuming that one of the three asymptotic limits
for the axial transport is valid, we could have used one of
the approximate dispersion relations, equations (106), (108)
or (104). Since we want to retain the ion inertia in the
radial direction as well as the azimuthal component of the ion
velocity, we cannot make the diffusion approximation in the
radial direction. We solve the equations for the radial transport
in their original, more general form (equations (9)—(11)).
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However, rather than solving the full set of equations (9)—(13)
that describe the coupled axial and radial dynamics, we make
use of the approximate analytical results derived in the previous
section for the axial direction. In our experiment the pressure
of the argon gas is 2.5 mTorr, and, as before, ojNy = 10718 m?
[26] and the gas is at room temperature, T, = 0.026eV. The
calculated Paschen parameter turns out to be b, = 18 > 1.
Therefore, according to equation (60) the ion inertia can be
neglected in the equations that describe the axial transport. For
T = 3 eV and for our plasma length the critical pressure (70)
is about 7.5 mTorr, larger than the pressure in our experiment
(in [24] the gas pressure is similar but the tube is longer, making
the gas pressure and the critical pressure of similar values).
This means that in our experiment the right inequality in (66)
holds. If also the left inequality in (66) holds, we can assume
that the axial dynamics is dominated by nonlinear diffusion.
We make this assumption here, reminding the reader that if
the form for v, in equation (67) is valid, the left inequality in
(66) holds for a strong magnetic field. We note that, as is seen
in figures 1-5, even when nonlinear diffusion is dominant,
retaining nonlinear diffusion only in the calculation leads to
a certain inaccuracy. The resulting calculated temperature
is probably overestimated by few per cent and the density is
underestimated by roughly 30%.

Assuming that the axial dynamics is approximately
dominated by nonlinear diffusion, we therefore write the
parameter v, as
2¢s0G

Equations (9)-(11), in

v, = BN — (76)

according to equation (65).
dimensionless form, become

of _(aBN 2eca [2 N\ 4 s g om.
& \ o L VowNL) M, & M, 3"
a —M,?)BM’ _ (a,BN  2aga | 2 )

3%' Cq L (TiNNL

rr N r M,
+(“V +£> M2 — L oM, — (14 M2) 22

Cg Cs Cg 5
(78)
and
raMg __ (Cl\)g@ + a,BN) M(; . aVg, Mr _ M@Mr .
A& cs Cs Cs §
(79)
In these equations
v, Vg r
M, = —, My = —, E=-—. (80)
Cs Cg a

The boundary conditions are a regularity of the solutions at
£=0and M,(§ = 1) = 1. Here, as in our experiment,
a=5cm L=45cmand N = P,/T, = 8 x 10”m~3. In
calculating the numerical values of the coefficients in these
equations, we use the following expressions for the collision
frequencies. The electrons collide with the argon neutrals at
a frequency veNn = (0enVedr)N, Where oen is the electron—
neutral collision cross-section. We use an expression that
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approximates the values of (o.nveqr) as given in the plot
in [26]. The electrons are first assumed to collide with ions
at the classical binary collision frequency [33] v = 2.9 x
10~"?n1n AT—3/2 57!, In these two expressions the neutral gas
and plasma densities are expressed in m—3 while T is expressed
in electronvolts. The ion—neutral collisions are not important
in the plasma radial transport. We therefore do not make a
detailed analysis of these collisions, as we did do in section 3.
Rather we assume, for simplicity, that the collision operator can
be linearized, so that the collision frequency is viy = %oiN vrN
as in equation (24). For the specified geometry, gas~pressure
and magnetic field intensity, the electron temperature turns
out, as before, to be an eigenvalue of the problem. The
second eigenvalue, v,, has been eliminated by employing
equation (76). In fact, since v is a function of the plasma
density both the electron temperature and the electron density
are unknowns in equations (9)—(11). Moreover, the electron
density is not uniform. We approximate the electron density
n in the expression for ve; by no/2. The peak density ng is
calculated from the expression

2/3
Pag

= = 1
fVﬂNST’ @D

no

obtained from equations (7), (14) and (22). Here f is found
by a numerical calculation according to the definition in (20).
We also use the relation g = 1 /aé/ 3 from equation (64).

We assume that the wave power that is radiated by the
antenna and not reflected towards the generator is completely
deposited in the plasma. That value of wave power is
substituted as P in equation (81). This assumption will be
questioned later.

The values of T and of n as functions of the magnetic field
intensity B, calculated for various wave powers P, are shown
in figures 9 and 10. The electron temperature T decreases
when the magnetic field increases. We do not present here
measurements of 7, but such a dependence of T on B has
been recently measured [24]. Since the electron temperature
T also depends on the electron density g (through the electron
collisionality), which, in turn, depends on the wave power P
(equation (81)), the electron temperature in figure 9 also
depends on the wave power. However, as seen in the figure,
the differences between the values of T for different values of
wave power P are small. The dependence is weak because
electrons collide with ions much less than with neutrals, and
therefore the dependence of the total electron collisionality on
the ion density is also small.

As seen in figure 10, the measured dependence of the
plasma density ny on the magnetic field intensity and on
the wave power is qualitatively similar to the dependence
predicted by the solution of the equations. The density
increases as either B or P are increased. However, in
contrast to the qualitative similarity between the experimental
and theoretical dependencies, there is a striking quantitative
disagreement. The density calculated from the measurements
is significantly lower than the density found by a solution of the
equations. Moreover, while the the calculated density reaches
saturation around a magnetic field somewhat larger than 100 G,
the measured density keeps increasing even at the maximal
magnetic field of 650G, albeit with values lower than the
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Figure 9. The electron temperature as a function of the magnetic
field intensity. The three dotted lines show the results for a classical
electron collisionality. The solid line is for the case of anomalous
Bohm electron collisionality.
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Figure 10. The measured (discrete signs) and calculated (——)
density n as a function of the magnetic field intensity for the three
wave powers as in figure 9. The density is calculated with the
assumption of classical electron collisionality.

calculated ones. The value of the magnetic field at saturation
can be estimated from equation (108),

BNL B pf CcsVe L oG

12"
P

= 82
2c¢s 2a? Wciee b (82

The two terms on the RHS of the equation represent plasma
radial and axial transport. The rate of the radial transport
is determined mostly by electron cross-field diffusion that is
induced by electron collisions across the impeding magnetic
field. The origin of the increase of the density ng with the
increase of magnetic field intensity B for a fixed value of
wave power P could be the improved radial confinement by the
magnetic field. That improved confinement results from the
radial electron mobility being impeded by the magnetic field,
as expressed by the term w¢wce / Ve in the coefficient v,,, and in
the approximated dispersion relation (108). The plasma axial
transport is determined by the ion mobility that is impeded,

in our case, by nonlinear collisions with neutrals, and is not
affected by the magnetic field intensity. When the magnetic
field is strong enough the radial transport becomes much
smaller than the axial transport and the density does not

continue to increase as the magnetic field increases. This
should happen when
p% CsVe L oG 83)
2a? weiwee bll)/z -
If ¢, ~ 2460ms~! and ve =~ 107s™! (T = 3eV), then

B > 100 G for inequality (83) to hold. This estimate of the
magnetic field intensity at which the plasma density saturates,
indeed agrees with the full numerical solution but contradicts
the experimental result, both are shown in figure 10.
Nevertheless, we can interpret the increase of density with
the increase of magnetic field intensity as a result of improved
confinement only if we assume an electron collision frequency
Ve that is higher than the sum of electron—neutral and electron—
ion collision frequencies, as was used in the calculations shown
in figure 10. We choose a value that corresponds to Bohm

diffusion,
wce

16~
As is shown in figure 11, the plasma density that is calculated
with this value for the electron collisionality agrees with the
measurements. The dependence of 7 on B in the case that
equation (84) holds is also shown in figure 9. The decrease of
T is much slower in this case.

Further support for the interpretation of the density
increase with the increase of the magnetic field intensity as
a result of an improved radial confinement, might be found
in figures 12-14. Figures 12 and 13 show the calculated
normalized plasma flow velocity and density. In figure 12 the
plasma is not magnetized. There is no plasma rotation and the
radial velocity increases gradually towards the wall. The radial
profile is relatively flat and the plasma density near the wall is
quite high relative to the peak plasma density. This means that
alarge part of the plasma is lost radially. Figure 13 presents the
opposite case of a strongly magnetized plasma (0.13 T in the
calculation, but it is similar at 0.08 T, the maximal magnetic
field in the experiment). In the magnetized plasma the density
is peaked at the cylinder axis, and there is a small region only
near the radial wall in which the plasma is accelerated to the
sonic velocity. The density at the wall is very small (and so
is the radial flux to the wall). Interestingly, there is a small
plasma rotation—the velocity My is not zero. Such a rotation
is possible in a magnetized plasma if there are electon—neutral
collisions, as is clear from equation (79). Figure 14 shows the
radial profile of the density at the axial centre of the plasma
as calculated from the probe measurements. Indeed, as the
magnetic field is increased, the ratio of the plasma densities at
the edge and on axis becomes smaller, similarly to the ratio
that could be calculated from the theoretical results shown
in figures 12 and 13. The anomalously high collisionality is
therefore consistent with the dependence of the radial plasma-
density profile on the magnetic field intensity, as we see
experimentally. It is also consistent with the weak dependence
of the plasma impedance on the magnetic field intensity that
we indeed observe.

(84)

Ve =
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Figure 11. The measured (signs) and calculated (——) density n,

as a function of the magnetic field intensity for the three values of
wave power as in figure 9. The density is calculated with the
assumption of anomalous Bohm electron collisionality.
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Figure 12. The calculated normalized plasma flow velocity and
density as a function of r in a nonmagnetized plasma. There is no
plasma rotation and the radial velocity increases gradually towards
the wall. The radial profile is relatively flat and the plasma density
near the wall is quite high relative to the peak plasma density.

A large part of the plasma is lost radially.

Despite this seemingly ample evidence for the anomalous
electron collisions, we find it hard to conclude that such a
high anomalous electron collisionality actually exists in our
plasma (at B = 600G the collision frequency according
to equation (84) should be about 60 times the classical
collisionality). We cannot point to any mechanism that could
cause such a high anomalous collisionality. We suggest,
rather, a second process that should be examined as the main
reason for the density increase. This second process is an
improved wave—plasma coupling via the helicon interaction,
causing a larger fraction of the total wave power to actually be
deposited inside the helicon source. The power P that should
be employed in equation (81) is not the power radiated by the
antenna, but rather that fraction of the power actually deposited
in the plasma, a fraction that increases with the increase of the
magnetic field. The fate of the power that is not absorbed in
the plasma, whether it is absorbed in a sheath near the antenna,
in the dilute plasma in the vacuum chamber, or elsewhere, will
be investigated in the future.
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Figure 13. The calculated normalized plasma flow velocity and
density as a function of r in a magnetized plasma (0.13 T). The
density is peaked at the cylinder axis, and there is a small region
only, near the radial wall, in which the plasma is accelerated to the
sonic velocity. The density at the wall is very small (and so is the
radial flux to the wall). There is a small plasma rotation.
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Figure 14. The radial profile of the density at the axial centre of the
plasma as calculated from the probe measurements. As the magnetic
field is increased, the ratio of the plasma densities at the edge and on
axis becomes smaller, similarly to that shown in figures 12 and 13.

7. Summary

We have developed a two-dimensional steady-state model,
in which, even though ion inertia was retained, a variable
separation enabled us to analyse separately the axial and the
radial transports. For the axial transport (along magnetic field
lines) an integral dispersion relation was derived that includes
a nonlinear form obtained from the ion—neutral collision
operator, in which the neutrals have a finite temperature. The
dispersion relation was solved for various values of the Paschen
parameter and was shown to have three asymptotic limits:
collisionless, linear diffusion and nonlinear diffusion. The
results obtained by solutions of the model equations, that
include the impeding of the radial transport by the magnetic
field, were compared to probe measurements performed inside
our helicon source. We have shown that the proposition that
the measured increase in the plasma density with the increase
of the magnetic field intensity is a result of an improving
confinement, implies that the electron collisionality is much
larger than expected from electron—ion and electron—neutral
collisions. When Bohm diffusion was assumed, a good
agreement between theory and experiment was found.

Since the collisionality that could cause Bohm diffusion
is anomalously high in our case, we suggest a different
explanation for the dependence of the density on the magnetic
field intensity. This different explanation, that the density



Two-dimensional equilibrium of a low temperature magnetized plasma

increase that follows an increase of the magnetic field intensity
results from an improved wave—plasma coupling via the
helicon interaction, will be examined in the future. The
assumption that the neutral density does not vary will also
be relaxed and neutral depletion will be incorporated in the
model.

We believe that the analysis presented here is a significant
step towards a more comprehensive analysis, that should
address simultaneously the wave energy deposition in the
plasma and the transport processes. Such an analysis should
also provide the spatial distribution of the electron temperature
by including an energy equation for the electrons.
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Appendix A. The collision term

Here we derive the form of the transport coefficient v,, =
ViN + (me/mi)ven = vin. To that end we calculate the drag
on the ions due to their collisions with neutrals. We start by
writing the Boltzmann collision operator [34]

3f(v1 /d N/dQ o
X[I’"i(vi)FN(ﬁf\J) — Fi(U;) Fn(0n)]

for charge-exchange and elastic ion—neutral collisions. For the
ion energies we are interested in, the cross-sections for both
types of collisions are approximately constant. Also, the total
ion and neutral momenta is conserved, Uy, = U; + Uy — U. We
therefore write

(85)

dacx (ﬁiv EN, 6:7 1_}]/\1)

dQ FT9) 'U cha(v - UN)
dog Ol
dS; - ivi/,cm 1cm6(v1 em lcm) d(cos 6;,,) dgg,-

(86)

Here, for the elastic collisions the cross section is isotropic at
the centre-of-mass frame of reference, the velocity of which is
tem = (Ui + Un)/2. The angle 6., is measured at the centre-
of-mass frame of reference with respect to v; ¢,. Integrating
over v/ yields

af (0)
dtex

= Ocx / don|U; — UNI[Fi(Un) Fx (U;)
— Fi(%) Fa(Un)]

for charge-exchange collisions and

af _ o dv v'/zcm v S — )d(cos 6. )
3o = Oel N Vi cm i,em — Vicm cm

x dgL, Fi(0) Fn (V) — Fi(0)[0; — T)N|FN({5N{| (88)

(87)

for elastic collisions. In the expression for the elastic collisions
we used the relation |; — On| = 2v]

We now make the assumption that the ion and neutral
distributions are known. In particular, we neglect the ion
pressure, as we did in the previous sections. Also, we assume
that the neutral distribution is Maxwellian. Therefore,

Fi(%) = né (¥ — v),

mi \? m;iv3
Fn@n) =N . N
NN (2” Tg> P < 2T, )

For the charge-exchange collisions, the collision operator takes

(89)

the form
= . 2
8f(vl):Nnacx<m ){Id dIM
Olex 27,
s = [exp(=d?) b

12 12

= my - = mj -

di = v;, d= v o1
27T, 2T,

and erf denotes the error function. In order to perform the
integration in equation (88) we write the ion distribution
function in spherical coordinates as F(v;) = (2n/ vi)(S(vi2 —
v2)8(cos b; — cos0)8(p; — @). After integrating over U we
employ the relation §(v2, — vfcm) = 8[(t; — V) - Oy — V)]
for integration over vy. The integration is then performed over
(Un—D)1 = WOn—1) — (In— D) (B — 0@ — V)/|5 — V)%,
resulting in

af N (ml > {eXp[ d - d —d)/|d - d|)’]
a, Nnoe|
Ot 2T, |di — d|7r3/2

s exp(—diz) 1

92)

The drag is found by calculating [dvim;vidf (9:)/d1,
which, as a result of conservation of the number of particles,
equals [duvm;(0;—v)9f (v;)/9¢. The drag for charge exchange
collisions is of the form minoex [din|vn — U] (In — U) Fn(Un).
For the specific distribution functions we chose, for the case of
no ion pressure, the integrals over the second terms in the
collision operators in equations (92) and (90) vanish, and the
total drag becomes

F 5 (2 1/2N FRLILI P
= —mjv noj - er
S\ N d 43

1 1
+— 7 (1 + 2d2> exp(—dz)],
Oel

7.

OiN = 0cx + 93)

Appendix B. The diffusion regime

We make the approximations of neglecting the ion inertia in
both axial and radial directions as well as the azimuthal ion
velocity, so that vy = 0. The equations that govern the ion
radial transport [(9) and (10)], in which we neglect the LHS,
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become

(94)

Requiring that f(r = a) = 0 (and equivalently v, (r = a) =
00), we obtain the solution of these diffusion equations as

J
Fr) = JO(PH’)’ 0 () = P1 C 1(p1r/a)
a a Vpr JO(Plr/a)
P2 2 . ©3)
v=2 = f= —Jl(pl) =0.432.
a2 v,

Here Jy and J; are the zero-order and first-order Bessel
functions and p; = 2.4048 is the first zero of the Bessel
function Jy. A solution of the dynamics in the z direction
will provide us with an additional relation between v, and T'.
Often we can approximate

WciWce

(96)

Vrr =
Ve

Turning to the axial transport, we combine the continuity
equation, equation (31), and equation (25). In equation (25) we
neglect the ion inertia, the second term on the LHS (we retain
one term due to the ion inertia in order for the calculation here
to be consistent with the calculation in section 3). Combining

the two equations we obtain the following equation:

Do crs 1o 4 98) | _ 2bebo
ac | ¢ bpb)?g 0C ) | T by O

The linear and nonlinear diffusions are recovered at the two
opposite limits. One is

C0)

8¢ 5
W Kl = 37(2 +bpb0b2g =0, (98)
which is the linear diffusion, in which:
2
g = cos(bey/bubat). biboby=(3) . (99)
The inequality in equation (98) becomes b(l)/ ’ &« b, when
equation (99) is used to express bp. At the opposite limit
4 0 Bg
e >l gy 6ae =0 s (100)

which is the nonlinear diffusion equation derived by
Godyak [2]. Here it is generalized to be coupled with the
radial dynamics through the coefficient by. The solution of
equation (100) is

§ xdx
bebP(1—0) = | ————,
PV ( C) A (1 —X3)2/3
. d (101)
2/3 _ 2/3 X dx
bpbo O[G —\/O' m

166

This dispersion relation (the second equality in equation (101))
is equivalent to the dispersion relation derived in section 3 (64).
The inequality in equation (100) becomes b(')/ > > b, when
equation (101) is used to express bp. We note that the nonlinear
diffusion equation was solved in [4] for the important case of
nonuniform gas density, exhibiting the resulting asymmetric
plasma density.

Appendix C. Summary of asymptotic results

In this section we summarize the asymptotic limits that were
derived in section 3 and in appendix B. Using the expressions
for v, and for v,, as given in equation (95) and in equation (96),
which are valid in the diffusion approximation in the radial
direction for a large enough magnetic field, we write

v, L

_ Lf CcsVe L
2c¢s

20 mao (102)
We substitute this expression for v, into the asymptotic
expressions for the axial transport derived in section 4 and
present here the resulting forms of the various dispersion
relations and flow variables.

The linear diffusion limit was described in section 3.2.
With the expression (102) the condition (55) for the validity of
the linear diffusion approximation becomes

|
—bp.
5 op

The solution of the dispersion relation and the density ratio
(56) then become

4vT b
b,
202 WeiWee 365 > 2’

2
Py CsveL

(103)

BNL Pt csvel +< ) p1 ¢V L +4va !
2¢s  20% WgWee 2 202 Wiwee 3¢5 T ’
T 2 covel  4v !
8s = = % 4 TbP
2 \2a* wewee 3¢y
(104)

As described above, ionization is balanced by radial diffusion
and by axial linear diffusion.

The case that the ion inertia should be retained was
described in section 3.3. The condition for the validity of this
limit (60) is

2
D1 CsveL

2 202 weiWee

, 1> by, (105)

The solution of the dispersion relation and the flow variables
(58) are

ANL 7 (” 1) M. +2 arctan(M.)
== 1, - = —M, + 2 arctan ,
2¢, 2 2 ¢ ‘ ‘
1 1 05
_ , . g~ _ > 087597
ST e 873 7

(106)

The third case, that of nonlinear diffusion, holds when (66)

p1 CcsVe L 2 1 2/3 4012/3 Cs 2
oy 73 — . 107
a” WciWee oG s vt
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The solution of the dispersion relation (65) and the density (64)
then become

BNL _ P12 CsVe L oG

2 202 wioee BN
(108)
13
ag Z 1
g‘ = —5 = —.
YE o’

As described above, ionization is balanced by radial diffusion
and nonlinear axial diffusion.

Examining the three limits, we note that for bp small, the
ion inertia limit holds, while for either a large bp or a strong
radial transport, linear diffusion dominates. At intermediate
values of bp nonlinear diffusion is valid.
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